top of page
Writer's pictureAbhinandan Borse

DATA CLEANSING GENERAL FUNCTION

CREATE OR REPLACE FUNCTION clean_data() RETURNS VOID AS

$$

BEGIN

-- Step 1: Handling Missing Values

-- Example: Replace missing values in 'age' column with 0

UPDATE your_table SET age = 0 WHERE age IS NULL;




-- Step 2: Removing Duplicates

-- Example: Remove duplicate rows from the table

DELETE FROM your_table WHERE rowid NOT IN (SELECT MIN(rowid) FROM your_table GROUP BY column1, column2, ...);

-- Step 3: Standardizing Text Data

-- Example: Convert all text in 'name' column to lowercase

UPDATE your_table SET name = LOWER(name);

-- Step 4: Converting Data Types

-- Example: Convert 'age' column to integer

ALTER TABLE your_table ALTER COLUMN age TYPE INTEGER;

-- Step 5: Handling Outliers

-- Example: Identify and handle outliers (e.g., by setting a threshold)

UPDATE your_table SET value = threshold WHERE value > threshold;

-- Step 6: Dealing with Inconsistent Data

-- Example: Standardize 'category' column values

-- UPDATE your_table SET category = 'Standard Value' WHERE category IN ('Variation 1', 'Variation 2', ...);

-- Step 7: Handling Special Characters

-- Example: Remove special characters from 'description' column

UPDATE your_table SET description = REGEXP_REPLACE(description, '[^a-zA-Z0-9 ]', '');

-- Step 8: Normalizing or Scaling Data

-- This may require specific operations depending on your data.

-- Step 9: Handling Categorical Data

-- This often involves encoding categorical variables. The approach will depend on the specific encoding method.

-- Step 10: Handling Date and Time Data

-- Example: Convert date format to 'YYYY-MM-DD'

UPDATE your_table SET date_column = TO_CHAR(TO_DATE(date_column, 'DD-MON-YYYY'), 'YYYY-MM-DD');

-- Step 11: Creating Derived Variables

-- Example: Calculate percentage

SELECT column1, column2, (value1 / value2) * 100 AS percentage FROM your_table;

-- Step 12: Checking for Data Integrity

-- Example: Check if 'age' is non-negative

SELECT * FROM your_table WHERE age < 0;

-- Step 13: Documenting Changes

-- Consider maintaining a log table where you record the changes made to the data.

-- Step 14: Testing Data Quality

-- This involves running various queries and checks to ensure data quality. The specific tests will depend on your data and analysis requirements.

-- Step 15: Automating Data Cleansing

-- Consider using stored procedures or scheduling SQL jobs for routine data cleansing tasks.

END;

$$ LANGUAGE plpgsql;


2 views0 comments

Recent Posts

See All

PRACTICE NUMPY

https://www.w3schools.com/python/numpy_exercises.asp https://www.w3resource.com/python-numpy-random https://www.w3resource.com/python-exe...

PRACTICE PANDAS

w3resource Website: https://www.w3resource.com W3Schools Website: https://www.w3schools.com GeeksforGeeks Website:...

Comments


bottom of page